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This paper deals with the temporal stability of the q-vortex trailing line vortex model.
We describe a family of viscous instabilities existing in a range of parameters which
is usually assumed to be stable, namely large swirl parameters (q > 1.5) and large
Reynolds numbers. These instabilities affect negative azimuthal wavenumbers (m < 0)
and take the form of centre-modes (i.e. with a structure concentrated along the vortex
centreline). They are related to a family of viscous modes described by Stewartson,
Ng & Brown (1988) in swirling Poiseuille flow, and are the temporal counterparts
of weakly amplified spatial modes recently computed by Olendraru & Sellier (2002).
These instabilities are studied numerically using an original and highly accurate
Chebyshev collocation method, which allows a mapping of the unstable regions up
to Re ≈ 106 and q ≈ 7. Our results indicate that in the limit of very large Reynolds
numbers, trailing vortices are affected by this kind of instability whatever the value
of the swirl number.

1. Introduction
1.1. Motivation

Slender vortices are observed in a variety of aeronautical, environmental and
astrophysical flows, and have been a focus of attention since the very first research in
fluid mechanics. A number of recent studies on the topic have been motivated by the
application to aircraft trailing wakes. In this case it is particularly crucial to predict
the far-field behaviour of vortices in order to evaluate their potential impact on a
following aircraft (see the review by Spalart 1998). A considerable amount of work
has been devoted to the stability properties of vortex wakes, in order to identify the
mechanisms of their decay and eventually to accelerate their dissipation.

A first class of instabilities, referred to as cooperative instabilities, occur in systems
of two vortices or more, and are caused by the straining field induced on each
vortex by the others. These instabilities were first investigated in the case of a pair of
counter-rotating vortices with a simple core structure (Crow 1970; Moore & Saffman
1975; Tsai & Widnall 1976). In an effort to get closer to realistic aircraft trailing
wakes, these studies were recently extended to more complex configurations, such as
co-rotating vortex pairs (Le Dizès & Laporte 2002), multiple vortex configurations
(Crouch 1997; Fabre, Jacquin & Loof 2002), as well as realistic vortex cores (Fabre
& Jacquin 2003) and spatially evolving wakes (Fabre, Cossu & Jacquin 2000).
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A second class of instabilities which concerns isolated vortices is due to the presence
of a core axial flow. The description and mapping of these instabilities has also received
considerable attention, using both numerical and asymptotic methods: see the papers
by Lessen, Leibovich, Stewartson, Duck, Khorrami and coauthors in the list of
reference. Most of these studies have taken as a base flow the generic model known
as the q-vortex. This paper considers the temporal stability properties of this generic
vortex model. The spatio-temporal properties of this flow have been considered
recently (Delbende, Chomaz & Huerre 1998; Olendraru et al. 1999; Olendraru &
Sellier 2002), and will not be addressed here. In the framework of temporal theory,
the q-vortex is parameterized by two dimensionless parameters: the ‘swirl number’
q , which measures the relative amplitude of the swirl velocity compared to the axial
velocity, and the Reynolds number Re. Therefore, the analysis consists of finding the
complex frequencies ω(m, k; q, Re) of the eigenmodes as functions of their azimuthal
and axial wavenumbers (m, k), and of the base flow parameters (q, Re).

1.2. Review of previous work

An overview of the temporal stability properties of the q-vortex may be found in
Mayer & Powell (1992, referred to as MP in the following), or in the review by Ash
& Khorrami (1995). In the strictly inviscid case (Re = ∞), the flow is unstable to
perturbations with negative azimuthal wavenumbers (m < 0) within a limited range
of swirl numbers. Helical modes (m = −1) possess the widest unstable range of
swirl numbers. They are the only existing unstable modes in the limit q =0, which
corresponds to a non-rotating Gaussian jet, and they are stabilized above a critical
swirl number qcrit ≈ 1.5, a value first reported by Lessen et al. (1974). Larger values
of |m| (from m = −2 to −6) have also been considered numerically in detail (Lessen
et al. 1974; Duck & Foster 1980; MP). These modes reach higher amplification rates,
but they affect a more limited range of swirl numbers. In all these cases a critical swirl
number slightly smaller than 1.5 was reported. For |m| � 1 instabilities become ‘ring
modes’, i.e. modes with a structure localized in an annular region, and their properties
are well described by the asymptotic study of Leibovich & Stewartson (1983). This
study also predicts a lower bound for the critical swirl number: qcrit �

√
2. Stewartson

& Capell (1985) refined this asymptotic theory to describe the vicinity of the critical
swirl number. In this range, unstable modes become ‘centre-modes’, i.e. they become
asymptotically concentrated in the vicinity of the vortex centreline. This behaviour
results in numerical difficulties when computing marginally stable modes. This may
explain why numerical studies failed to give a better approximation than qcrit ≈ 1.5.

A number of studies were also conducted on the viscous problem, focusing on
moderate values of the swirl number (q < 1.5). The asymptotic study of Stewartson
(1982) demonstrated that viscosity has a purely stabilizing effect on the inviscid modes
with m < 0. This result was verified numerically by MP. Moreover, two kinds of purely
viscous modes have been found by Khorrami (1991) and Duck & Khorrami (1992),
corresponding to azimuthal wavenumbers m = 0 and m =+1. These modes occur for
q < 1.3, and their growth rates are always several orders of magnitude smaller than
those of the corresponding inviscid modes.

Up to now, the range of parameters corresponding to large swirl numbers (q > 1.5)
and large Reynolds numbers (Re � 103) does not seem to have been studied in the
framework of temporal stability theory. However, there are several indications of the
existence of unstable modes in this range. First, the asymptotic study of Stewartson
& Brown (1985) leads to the prediction of weakly unstable modes in the vicinity of
the curve k = −m/q in some intervals of swirl numbers. The largest instability interval
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is found for helical modes (m = −1) and corresponds to 1.77 � q � 2.31. These modes
are characterized by a complex structure: they display both a centre-mode behaviour,
and a critical layer singularity. Due to the critical layer, these modes can only be
justified as an eventual limit of modes computed using the viscous equations with
vanishing viscosity. These rather bizarre results (according to the authors’ own words)
seem to have been overlooked by most authors. The only relevant study is that of
Duck (1996), who concluded that viscosity has a purely stabilizing effect on these
modes. However, he applied his results to a different range than considered here,
namely to values of q close to 0.4 and 0.8.

A second indication of the existence of instabilities for large swirl numbers may be
found in the work of Stewartson et al. (1988), referred to as SNB in the following,
who considered the related problem of swirling Poiseuille flow (i.e. a rotating flow
in a duct). They demonstrated the existence of a family of viscous unstable centre-
modes occurring for large values of the Reynolds number. In their conclusions, SNB
suggested that a similar family of viscous modes may exist in the q-vortex, and may
affect all values of the swirl number q in the limit Re → ∞. This point does not
seem to have been explored further. A final indication of the existence of instabilities
for large swirl numbers comes for the work of Olendraru & Sellier (2002), who
considered the spatio-temporal stability properties of the q-vortex. They observed for
Re = 104 the existence of spatially unstable modes up to q ≈ 3 for both m= −1 and
m = −2. Olendraru & Sellier (2002) suggested that these modes could be the spatial
counterparts of the modes predicted by Stewartson & Brown (1985). However, the
modes observed by Olendraru & Sellier (2002) occur in a continuous range of swirl
numbers, and not in discrete intervals as predicted by Stewartson & Brown (1985).
Since their objective was mainly the mapping of the region of absolute instability,
Olendraru & Sellier (2002) did not explore this problem further.

1.3. Goal of the present work

The first goal of the present work is to complete the topography of instabilities of
the q-vortex, as presented by MP, by a mapping of the region corresponding to high
swirl numbers (q > 1.5) and moderately high Reynolds numbers (up to Re ≈ 106).
We show that while viscosity is purely stabilizing for small Reynolds numbers, it
becomes destabilizing for Re � 103. As the Reynolds number is increased above this
order of magnitude, instabilities with negative azimuthal wavenumbers (m < 0) exist
for swirl numbers well above the inviscid threshold. For example, for Re= 104, the
critical swirl numbers associated with helical (m = −1) and double-helix (m = −2)
modes correspond respectively to qcrit = 3.235 and 2.763, about double the inviscid
threshold qcrit ≈ 1.5. Moreover, our numerical results indicate that instabilities may
be present for all values of q in the limit of vanishing (but non-zero) viscosity.

The second goal is to clarify the nature of these instabilities. We show that they are
distinct from the inviscid-type instabilities occurring for q < 1.5, as well as from the
viscous modes of Khorrami (1991) and from the near-neutral inviscid centre-modes
considered by Stewartson & Brown (1985). On the other hand, they are related to the
viscous centre-modes discovered by SNB in the swirling Poiseuille flow.

The paper is organized as follows. Section 2 is devoted to the description and
validation of the numerical method, an original and highly accurate Chebyshev
collocation method. It is shown in particular that this method allows high-precision
results with only half of the number of collocation points required by related methods.
In § 3 the topography of instabilities is described up to Re = 104 for m = −1 and −2.
Then, the trends for larger values of |m| and Re are briefly addressed. In § 4, some
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characteristic features of these instabilities are detailed, in particular the behaviour
of the secondary unstable branches and the structure of the eigenmodes. Then, the
relation of these modes to other families of instabilities are discussed. In § 5, the
relevance of the present results with respect to aircraft trailing wakes is discussed.
Finally, § 6 summarizes the results.

2. Problem formulation and numerical treatment
2.1. Base flow

The base flow used here is the well-known q-vortex trailing line vortex model.
Using cylindrical polar coordinates (r, θ, z), the radial, azimuthal and axial velocity
components of this model are defined in non-dimensional form as follows:

U (r) = 0, V (r) = q/r
(
1 − e−r2)

, W (r) = e−r2

. (2.1)

This base flow is characterized by two dimensionless parameters: the swirl parameter
q and the Reynolds number Re (which is based on the axial velocity scale and the
dispersion radius of vorticity). Note that a uniform advection of amplitude a is
sometimes added to the axial velocity in the model. This parameter is not relevant
for the temporal stability problem because of Galilean invariance, and here it is set
to zero as in Lessen & Paillet (1974).

The q-vortex corresponds to a simplification of the Batchelor (1964) vortex, namely
a spatially evolving similarity solution of the incompressible Navier–Stokes equations
under a quasi-parallel approximation. It has been successfully used to fit a variety
of experiments, such as vane-guide-generated pipe flows, and trailing vortices with
moderate Reynolds numbers. On the other hand, as emphasized by Spalart (1998),
the Batchelor (1964) solution cannot be considered as a relevant model for trailing
vortices originating from high-aspect-ratio wings at high Reynolds numbers. In such
vortices the vorticity and axial velocity fields are far from Gaussian, and in order
to describe them at least two core radius measures have to be introduced. This was
particularly shown by Jacquin et al. (2001), who investigated experimentally the wake
of an A300 model up to a downstream distance of 9 wing spans. In order to fit
the azimuthal velocity field of the vortices, they introduced a ‘two core scales model’
which is composed of a very narrow ‘internal core’ in solid-body rotation embedded
in an ‘external core’ where the velocity decreases following a power law. A similar
structure was proposed for the axial velocity field. The ‘inner’ and ‘outer’ core radii
characterizing this model were evaluated to be respectively 1% and 10% of the wing
span.

The Batchelor (1964) solution has been criticized from a mathematical point of
view, because of the non-uniquess of the solution and because of the inherent parallel
approximation (Uberoi 1979). Its failure to describe realistic trailing vortices can also
be explained with physical arguments, already raised by Moore & Saffman (1973).
Basically, this solution describes the viscous diffusion of a flow originating from a line
vortex at the inlet plane. Such an inlet condition would result from a ‘rectangular’
wing lift distribution, and this situation is unrealistic. Real-life trailing vortices are
not formed in this way, but rather through the roll-up of a vortex sheet, and possibly
through the merging of several vortex cores. These mechanisms are essentially inviscid,
and viscous diffusion (laminar or turbulent) is not expected to play any role after
completion of the roll-up.

In conclusion, the q-vortex is not fully representative of real vortices such as
those found behind aircraft. But it remains sufficiently meaningful, mathematically
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and physically, for studying the physics of three-dimensional slender vortices and in
particular the linear dynamics resulting from the coupling between tangential shear
and axial shear. In this respect, this model is sufficiently rich to justify its almost
universal use in stability analyses.

2.2. Viscous stability equations

In the stability analysis we consider infinitesimal disturbances in the form of
eigenmodes, characterized by an axial wavenumber k, an azimuthal wavenumber
m, and a complex frequency ω, i.e.

(u′
r , u

′
θ , u

′
z, p

′) = [u(r), v(r), w(r), p(r)] exp(ikz + imθ − iωt). (2.2)

Linearization of the continuity, r-, θ- and z-momentum equations leads to the
following set of equations: (

∂r +
1

r

)
u +

im

r
v + ikw = 0, (2.3a)

i(mΩ +kW −ω)u−2Ωv+∂rp =
1

Re

[(
∂2

r +
1

r
∂r − k2 − m2 + 1

r2

)
u − 2im

r2
v

]
, (2.3b)

i(mΩ + kW −ω)v +Ξu+
im

r
p =

1

Re

[(
∂2

r +
1

r
∂r − k2 − m2 + 1

r2

)
v +

2im

r2
u

]
, (2.3c)

i(mΩ + kW − ω)w + W ′u + ikp =
1

Re

(
∂2

r +
1

r
∂r − k2 − m2

r2

)
w. (2.3d)

Here Ω(r) = V (r)/r denotes the rotation rate, and Ξ (r) = V (r)/r + V ′(r) is the mean
flow axial vorticity. Differentiation with respect to r is denoted by primes for the
mean flow quantities, and by ∂r for perturbations.

To resolve this system, one can conveniently reduce the number of unknown
functions from four to two by elimination of the axial velocity and pressure
components. This leads to a system for [u(r), v(r)] which can be put into the following
symbolic form:

ωL
(

−iu
v

)
=

(
M − i

Re
D

) (
−iu
v

)
. (2.4)

The components of the matrices L, M, D are differential operators with real
coefficients, which are detailed in the Appendix. This reduced system can be considered
as the cylindrical version of the coupled Orr–Sommerfeld and Squire equations. It
takes the form of a generalized eigenvalue problem for the frequency ω. This is
convenient for a temporal stability analysis, and makes the numerical resolution
using a global matrix eigenvalue method straightforward. Note, however, that the
reduced form (2.4) is not valid in the two-dimensional case (k = 0), because in this
case the radial and azimuthal velocity components (u, v) cannot be considered as
independent functions. Therefore our method cannot be expected to be accurate in
the limit of very long wavelengths (k → 0).

Let us consider now the limit conditions to be satisfied by the eigensolutions. At
r = ∞, according to Lessen & Paillet (1974), the unknown functions must decrease
exponentially for k �= 0 (and algebraically for k = 0, a case that will not be considered
here). At the axis of the vortex (r = 0), the use of cylindrical coordinates leads to a
regular singularity in the equations. The physically relevant solutions, which must be
continuous and single-valued, can be expanded as Taylor series at r = 0. The limit
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conditions can be deduced from inspection of the leading-order terms of the Taylor
series, and depend upon the azimuthal wavenumber m. For m =0:

u = O(r), v = O(r), w = O(1), p = O(1); (2.5a)

and for |m| �= 0:

u = O(r |m|−1), v = O(r |m|−1), w = O(r |m|), p = O(r |m|), (2.5b)

and

lim
r=0

|m|u + imv

r |m|−1
= 0. (2.5c)

Note, finally, that the functions u, v, w, p on the interval [0, ∞] can be extended to
functions on [−∞, ∞], and that the parity of these functions depends upon m: for m

odd (respectively even), w, p are odd (respectively even) and u, v are even (respectively
odd). The numerical resolution method takes advantage of this property.

2.3. Description of the numerical method

The numerical method used here is a Chebyshev spectral collocation method. This
kind of method was first applied to the stability of swirling flows by Khorrami
et al. (1989). Since then it has been used in most of the stability analyses (Khorrami
1991, 1992; MP; Olendraru & Sellier 2002). The method used here differs from
other implementations by a few points, which are described below. A more complete
description can be found in Fabre (2002).

First, the problem has to be mapped from physical space to Chebychev space
(ξ ∈ [−1, 1]) via a mapping function r =φ(ξ ). For this purpose, previous contributors
have truncated the problem to a finite interval r ∈ [0, Rmax], and have proposed
and discussed various mapping functions. Here, the eigenfunctions are considered
as functions of r ∈ [−∞, ∞], and are mapped to Chebyshev space by the following
algebraic mapping:

r = φ(ξ ) =
Hξ

1 − ξ 2
. (2.6)

This mapping function depends upon a single parameter H which controls the
spreading of the collocation points: about half of the collocation points in physical
space occupy |rj | <H .

Then, instead of using all of the Chebyshev polynomials, the parity properties of
the unknown functions are taken into account, and the following expansions are used:

F (ξ ) =

N∑
j=0

ajT2j (ξ ) (2.7)

for even functions, and

F (ξ ) =

N∑
j=0

ajT2j+1(ξ ) (2.8)

for odd functions. In both cases, the collocation points in Chebyshev space are chosen
as the N + 1 positive roots of the Chebyshev polynomial of order 2N + 2:

ξj = cos

(
(2j + 1)π

4N + 4

)
, j = 0, N. (2.9)

These points correspond to half of the Gauss points of a complete expansion of order
2N + 1. The collocation points in physical space are deduced through rj =φ(ξj ). The
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parity properties of the unknown functions are introduced into the definition of the
differential operators appearing in (2.4). Note that this leads to different schemes for
odd and even values of m. The great advantage of this method is that with N + 1
collocation points, we are actually handling a Chebyshev expansion of order 2N for
an even function, and 2N + 1 for an odd function.

Finally, in the present method, no limit conditions are imposed on the unknown
functions. As discussed by Canuto et al. (1988), the use of a Chebyshev expansion in
conjunction with an algebraic mapping leads to an exponential convergence provided
that the functions to be computed decay at least algebraically as r → ∞, a property
which is verified here. At r = 0, functions admitting an expansion of the form (2.7)
or (2.8) do not necessarily satisfy the limit conditions (2.5), except for the case of
axisymmetric modes (m =0). However, as will be illustrated below, for converged
modes the limit conditions are effectively satisfied with spectral accuracy.

It is known that a spectral method generally leads to a large number of spurious
unconverged couples of eigenvalues/eigenvectors, and a rule is needed to identify the
physically relevant modes. Two convergence criteria have been used for this purpose.
The first one is the ‘spectral residual’, which is defined, for a function with a spectral
expansion of the form (2.7) or (2.8), as the relative ‘weight’ of the 10% of coefficients
of larger order in the expansion, i.e.

Cs =

(
N∑

j=N−N/10

|aj |2
) /(

N∑
j=0

|aj |2
)

. (2.10)

A value of Cs close to zero indicates that the eigenfunction does not contain any
short-wave oscillations, as expected for converged modes. The second criterion is
defined, for m �= 0, as the value of the limit condition at the axis given by (2.5c):

C0 = lim
r=0

|m|u + imv

r |m|−1
, (2.11)

where u and v are replaced by their spectral approximations. Other convergence
tests were performed. In particular, it was carefully checked that the retained modes
also satisfied the limit conditions at r → ∞. Moreover, in some cases the results
were compared to those obtained with a second eigenvalue problem arising from
the adjoint stability equations. These verifications showed that the criteria Cs and
C0 defined above are sufficient to discriminate accurately the converged modes from
the spurious ones. Typically, an eigenmode can be considered as spectrally converged
when both these criteria are smaller than 10−8.

2.4. Validation of the numerical method

To illustrate the efficiency of the method, we present convergence histories for three
test cases which are already documented in previous work. For each case we display
the computed amplification rate ωi as function of the number of collocation points
N and the mapping parameter H . The first case, displayed in table 1, corresponds
to the most unstable inviscid mode for q = 0.5, m = −1, k = 0.5. For this case, MP
gave a converged value with 13 significant digits, using as many as 200 collocation
points. The second case, displayed in table 2, corresponds to the viscous axisymmetric
mode with m =0, q =1, k =0.5, Re =104 used by Khorrami (1991) as a convergence
test. The third case, displayed in table 3, corresponds to m = −1, q = 0.4, k = 2.01123,
Re = 104 where a crossing between two modes of instability has been documented
by Khorrami (1992). The values of the convergence Cs and C0 are also displayed in
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N H ωi Cs C0

40 2 0.20262810 5 × 10−15 5 × 10−10

60 2 0.202628101 5 × 10−17 3 × 10−11

80 4 0.20262810129 1 × 10−21 1 × 10−13

100 4 0.2026281012941 3 × 10−26 1 × 10−14

130 6 0.2026281012941 2 × 10−23 1 × 10−14

MP 200 – 0.2026281012942 –

Table 1. Convergence history of the Chebyshev method, as a function of the number of
collocation points N and the mapping parameter H . Case I: most amplified mode for q = 0.5,
m= −1, k = 0.5 (inviscid case). MP: Result from Mayer & Powell (1992).

N H ωi Cs

20 2 1.84 × 10−4 1 × 10−7

25 2 1.8469 × 10−4 1 × 10−8

32 2 1.8469080 × 10−4 5 × 10−11

50 2 1.84690800 × 10−4 9 × 10−17

50 4 1.84690800 × 10−4 3 × 10−13

80 2 1.8469080002 × 10−4 9 × 10−24

80 4 1.8469080002 × 10−4 9 × 10−22

K 50 – 1.8468 × 10−4 –

Table 2. Convergence history of the Chebyshev method. Case II: most amplified mode for
q = 1, m= 0, k = 0.5, Re =104. K: result from Khorrami (1991).

N H Mode 1 Mode 2

40 1 8.15 × 10−3 8.15 × 10−3

50 1 8.1530 × 10−3 8.1575 × 10−3

60 1 8.153070 × 10−3 8.157574 × 10−3

80 1 8.1530702 × 10−3 8.15757484 × 10−3

100 1 8.1530702 × 10−3 8.15757484 × 10−3

K 100 – 8.1530 × 10−3 8.1575 × 10−3

Table 3. Convergence history of the Chebyshev method. Case III: modes 1 and 2 for q = 0.4,
m= −1, k = 2.01123, Re= 104. K: result from Khorrami (1992).

table 1 and Cs in table 2, and the effect of a variation of the mapping parameter H

with fixed N is illustrated in table 2.
In all these cases, the same precision as previously reported has been obtained

using a number of collocation points smaller by a factor 2. This factor 2 can be
attributed to the use of the symmetry conditions in the Chebyshev expansion: with
N + 1 collocation points, we are actually handling a Chebychev expansion of order
2N . Considering that the computational time required to solve an eigenvalue problem
scales as the cube of the dimension of the matrices, a factor 8 is actually gained. The
gain is even better if we recall that we are using a reduced system in terms of the
eigenfunctions u and v, instead of the starting equations for u, v, w, p.

Thus, the method is convenient for scanning rapidly and efficiently large regions of
the space of parameters. Note, however, that the efficiencies of the present scheme are
specific to the temporal stability analysis of axisymmetric flows. As such, the approach
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Overall maximum Critical Neutral mode
of amplification swirl number with largest k

ωmax
i q k qcrit k q k

m = −1, Re= 102 0.1734 0.406 0.769 1.146 0.490 0.269 1.714
m = −1, Re= 103 0.2339 0.448 0.811 1.793 0.306 0.282 2.278
m = −1, Re= 104 0.2416 0.457 0.812 3.235 0.160 0.189 3.375
m = −1, NV 0.2424 0.458 0.811 ≈1.5 ≈0.54 ≈0.42 ≈2

m = −2, Re= 102 0.1812 0.622 1.108 1.173 0.736 0.616 1.957
m = −2, Re= 103 0.2956 0.680 1.174 1.673 0.736 0.515 2.597
m = −2, Re= 104 0.3119 0.691 1.180 2.763 0.375 0.236 4.711
m = −2, NV 0.3138 0.693 1.182 ≈1.5 ≈ 1.1 ≈0.7 ≈2.4

m = −3, Re= 102 0.1431 0.656 1.582 1.108 1.769 0.880 2.434
m = −3, Re= 103 0.3245 0.761 1.659 1.536 1.346 0.493 3.660
m = −3, Re= 104 0.3514 0.776 1.664 2.280 0.784 0.265 6.664
m = −3, NV 0.3546 0.779 1.665 ≈1.5 – – –

Table 4. Dependence on the Reynolds number of some properties of the instability region for
m= −1, −2 and −3: overall maximum amplification rate ωmax

i and corresponding swirl number
and wavenumber; critical swirl number qcrit and wavenumber of the corresponding neutral
mode; swirl number and wavenumber of the neutral mode with the smallest wavelength. The
results displayed for the inviscid case (NV) are those of MP.

cannot be tailored into a general eigenvalue solver (performing both temporal and
spatial analyses) for an arbitrary mean flow.

In the remainder of this work, the mapping parameter was generally set to H = 1,
and in some cases to H = 0.5 in order to concentrate a larger number of collocation
points close to the vortex centreline, where the structure of the modes is more complex.
The number of collocation points was increased with the Reynolds number, from
N = 60 for Re =100, up to N = 280 for Re = 106.

3. Topography of instabilities
In this section, we describe the topography of instabilities for helical (m = −1) and

double-helix (m = −2) modes, for Reynolds numbers ranging from Re= 102 to 104.
Then we briefly describe the extent of the instability domain and the variation of the
amplification rate for larger values of |m| and Re.

3.1. Helical modes (m = −1)

Consider, first, the case of helical modes (m = −1). Figure 1 displays iso-levels of
the amplification rate of the most amplified mode in the (q, k)-plane, the outermost
contour being the neutral stability curve. In this plot the thick dashed line corresponds
to the stability curve in the inviscid case, reproduced from figure 3 of MP. Note that
we consider the regions of parameters m < 0, q > 0, whereas MP’s figures correspond
to m > 0, q < 0; due to the symmetries of the problem both choices are equivalent.

For Re= 102 (figure 1a), the instability region is smaller than in the inviscid case,
and the flow is completely stabilized above a critical swirl number of qcrit =1.146. This
value is substantially smaller than the inviscid threshold qcrit ≈ 1.5. Moreover, within
the unstable region the amplification rates are always smaller than in the inviscid case.
According to table 4, the overall maximum of amplification is about 30% weaker than
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Figure 1. Topography of the most unstable mode in the (k, q)-plane, for m= −1 and
(a) Re =102, (b) 103, and (c) 104. Contours of constant amplification rate ωi (outermost contour
is the neutral curve, spacing between contours is 0.02). The thick dashed line corresponds to
the neutral curve in the inviscid case (from MP). Plot (c) for Re= 104 also displays as a dotted
line the curve of equation k = −m/q which approximates the upper neutral curve. The dotted
portions of the lower neutral curves are inferred (not computed).
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in the inviscid case, and the corresponding position in the (q, k)-diagram is somewhat
different. On the other hand, the unstable region located in the range −0.074 <q < 0
is only weakly affected by viscosity, and the neutral curve is close to the inviscid one.
It can be remarked that the unstable region displays a two-lobed structure, with a
prominent ridge separating the lobes. This characteristic feature was also observed in
the inviscid case by MP. For Re= 100 the position of the ridge is slightly displaced
towards smaller q and k.

For the range of parameters considered so far, it may be concluded that viscosity
has a purely stabilizing effect on the instabilities. This behaviour is consistent with
the asymptotic study of Stewartson (1982), and with the observations in § 3.2 of MP.
We recall that MP considered even smaller values of the Reynolds numbers, and
observed an elimination of the unstable region at Re =13.9. As we shall see now, a
different picture is obtained when considering larger values of the Reynolds number.

Figure 1(b) presents the case Re =103. In this case, the unstable region has a
larger extent than in the inviscid case. It extends both towards large q (for small
k) and towards large k (for small q). The critical swirl number for stabilization is
now qcrit = 1.793, and the unstable mode with the largest wavenumber corresponds
to k = 2.281. On the other hand, in the range of parameters where inviscid
instabilities exist, viscosity remains generally stabilizing, and the amplification rates
are slightly smaller than the inviscid results of MP. For example, the overall maximum
amplification rate is now ωi = 0.2339, nearly 3% smaller than in the inviscid case,
and it is found at approximately the same position in the (q, k)-diagram (see table 4).

Figure 1(c) corresponds to Re= 104. The unstable region is now observed to extend
well beyond the inviscid threshold. The critical swirl number is qcrit = 3.235, more than
twice that in the inviscid case. This is in reasonable agreement with the value q ≈ 3.1
obtained by Olendraru & Sellier (2002) using spatial stability analysis. Note that in
the central parts of the instability region the amplification rates are very close to the
inviscid results. For example, the overall maximum amplification rate corresponds to
ωi = 0.2416, nearly 0.3% smaller than in the inviscid case, and it occurs for the same
values of k and q . Figure 1(c) also displays as a dotted line the hyperbola of equation
k = −m/q . In the range 0.5 <q <

√
2, this curves closely corresponds to the upper

neutral curve of both the Re = 104 and the inviscid results. In the inviscid case this
property was predicted by the asymptotic analysis of Stewartson & Capell (1985).
Moreover, in the ranges q < 0.5 and q >

√
2, the hyperbola still gives a good estimate

of the upper neutral curve in the viscous case.
Note that a second instability region is also apparent in the lower left corners of

plots 1(a–c), approximately in the range of parameters delimited by q < 0, 0 < k < |q|.
This region corresponds to the viscous instability identified by Khorrami (1991).
The topography of this instability has already been described in detail by MP (see
their figure 11). It extends down to about q = −1.1, outside the range of parameters
considered in our study.

3.2. Double-helix modes (m = −2)

Figure 2 displays the topography of instabilities for double-helix modes (m = −2),
with the same set of Reynolds numbers, and with the same representation conventions
as in figure 1. Results display the same trends as for m = −1. For Re = 102 (figure 2a),
viscosity is purely stabilizing and the instability region has a smaller extent than in the
inviscid case. Here the critical swirl number is reached at qcrit = 1.173, and the overall
maximum of amplification corresponds to ωmax

i = 0.1812, a value 40% smaller than
in the inviscid case (which corresponds to ωmax

i =0.3138). Recall that MP reported



250 D. Fabre and L. Jacquin

Figure 2. As figure 1, but for m= −2 and (a) Re= 102, (b) 103, and (c) 104.
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a complete stabilization of the flow below a Reynolds number of Re= 27.3.
For Re =103 (figure 2b), the unstable region extends beyond the inviscid neutral
curve. For this case the critical swirl number is qcrit =1.673. On the other hand,
viscosity remains stabilizing in the range of parameters where an inviscid stability
occurs. For example, the maximum amplification rate, reported in table 4, is nearly
6% weaker than in the inviscid case. Finally, for Re = 104 (figure 2c), the critical
swirl number is qcrit =2.763. As for helical modes, this value is about twice that in
the inviscid case. It is also in agreement with the value q ≈ 2.7 obtained by Olendraru
& Sellier (2002) using spatial stability analysis. As for m = −1, the curve of equation
k = −m/q closely corresponds to the upper neutral curve in the region of inviscid
instability and gives an upper bound to this neutral curve in the regions of purely
viscous instability.

3.3. Trends for larger m and Re

The results for m = −3 are qualitatively similar to the m = −2 case and are not
displayed. For Reynolds numbers of Re= 102, 103 and 104, the critical swirl numbers
correspond respectively to qcrit =1.108, 1.536 and 2.280. Table 4 presents several
quantitative results obtained for m = −1, −2 and −3. We display the value and the
location of the overall maximum amplification rate ωmax

i , the critical swirl number
qcrit and the corresponding wavenumber, and the location of the neutral mode with
the largest wavenumber. The corresponding results in the inviscid case, reproduced
from MP, are also displayed.

For values of Re, q and m larger than those considered above, the complete mapping
of the unstable region becomes a difficult numerical task. The difficulties are partly
due to the structure of the unstable modes, which become more and more singular as
the Reynolds number is increased, as will be illustrated in § 4.2. Difficulties are also
due to the fact that instability affects long wavelengths (small k), a region where our
numerical method is less accurate. Note that this latter difficulty prevented us from
determining exactly the lower marginal curve for m = −1 in figure 1(a–c). Despite
these difficulties, figures 1 and 2 clearly suggest that the extent of the unstable range
of parameters continuously increases as the Reynolds number is raised, and that in
the limit of vanishing viscosity (Re → ∞), it occupies the whole region located below
the curve of equation k = −m/q . This behaviour has also been observed for m = −3
and −4, and it is expected to occur for all negative azimuthal wavenumbers.

To extend the description of the unstable region to larger Reynolds numbers, it
can be noted that both the most unstable modes (with fixed Re, q) and the mode
corresponding to marginal stability (with fixed Re and critical swirl number qcrit)
lie close to the curve of equation k = −m/2q . This can be verified for Re =104 (see
figures 1c, 2c and table 4), and was also observed to hold for larger Reynolds numbers.
Using this property, we have been able to map the unstable region in the (Re, q)-
plane, for azimuthal wavenumbers m = −1, −2 and −3, up to Re= 105. These results,
which required as much as N = 280 collocation points to achieve the convergence,
are represented in figure 3. The curves indicate the critical swirl number qcrit for
stabilization with fixed Reynolds number. Alternatively, they can be interpreted as an
indication of the critical Reynolds number Recrit for destabilization with fixed swirl
number. When the Reynolds number is increased, the helical modes (m = −1) are the
first to be destabilized. The modes with larger |m| then follow.

Although the curves in figure 3 cannot be continued towards larger Reynolds
numbers with the present numerical method, these results strongly suggest that as
the Reynolds number goes to infinity the critical swirl number does not reach a finite
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Figure 3. Marginal stability curves in the (Re, q)-plane for m= −1, −2 and −3.

Figure 4. Amplification rate ωi of the most unstable mode as function of Re for (a) q = 2
and (b) q = 3 with azimuthal wavenumbers m ranging from −1 to −5.

limit, but is continuously increasing. This is surprising because as q → ∞ the q-vortex
reduces to a pure vortex with no axial velocity, which is known to be inviscidly stable
(Sipp 1999). However, this behaviour is confirmed by ongoing asymptotic analyses.
In particular, we have been able to demonstrate that as Re → ∞ the critical swirl
number scales as qcrit = O(Re1/3) (Fabre & Le Dizès 2004).

To end this section, we illustrate in figure 4 the variation of the amplification rate
of the most unstable modes with the Reynolds numbers, with m ranging from −1 to
−5. For q = 2 (figure 4a), the helical (m = −1) mode is the first to be destabilized (for
Re ≈ 1500). This mode reaches its maximum amplification ωi ≈ 0.01963 for a Reynolds
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number Re ≈ 1.4 × 104. The modes with m = −2 and m = −3 become unstable at
larger values of the Reynolds number, but they reach higher amplification rates.
The maximum values on these branches are ωi =0.02630 and 0.02642, and they are
obtained for 2.6 × 104 and 5.7 × 104, respectively. For larger |m| the maximum values
attained by the branches are observed to decrease. For m = −4 and −5, the maxima
occur for 1.34 × 105 and 2.78 × 105, and correspond respectively to ωi = 0.02446 and
0.02215.

As shown in figure 4(b), similar trends are observed for q =3. Here instabilities
occur for larger Reynolds numbers and reach lower maximum amplifications.
For m = −1, −2, −3, −4 and −5 the maximum values are ωi = 0.01188, 0.01544,
0.01525, 0.01401 and 0.01262, and the corresponding Reynolds numbers are 6.5 × 104,
1.26 × 105, 3.01 × 105, 7.14 × 105, and 1.42 × 106, respectively.

It is worth pointing out that in all cases displayed, the amplification rates of the
viscous modes are but one order of magnitude smaller than those of the inviscid
modes existing for q < 1.5 (compare with the inviscid results displayed in table 1). On
the other hand, these instabilities are much more amplified than the viscous modes
of Khorrami (1991), whose amplification rates are at most of order 10−4 in the range
of Reynolds numbers considered here.

4. Nature of the instabilities
The results of the previous section are in apparent contradiction with the results

of Stewartson (1982) who demonstrated that viscosity has a purely stabilizing effect
on the instabilities occurring for q < 1.5. This paradox may be cleared up if one
considers that the instabilities demonstrated here for q > 1.5 are of a different nature
than those considered by Stewartson (1982). In this section we show some evidence
that these instabilities belong to a family of viscous centre-modes which is distinct
from the inviscid instabilities mapped by MP, as well as from the near-neutral inviscid
modes of Stewartson & Brown (1985) and also from the viscous modes of Khorrami
(1991). On the other hand, they are related to the family of viscous instabilities
discovered in the swirling Poiseuille flow by SNB. To demonstrate this, we investigate
the temporal instability branches and comment their similarities with the results of
SNB. We then describe the structure of the modes and show that they display a
centre-mode behaviour. Finally, based on these results we discuss more precisely the
similarities and differences with the modes of SNB.

4.1. Temporal branches

In the previous section the analysis was restricted to the most amplified modes.
However, as often observed for vortex instabilities, our computations also revealed the
existence of secondary branches of unstable modes. Generally, they are characterized
by weaker amplification rates than the primary modes and their number is an
increasing function of the Reynolds number. We illustrate this point in figures 5 and
6 for various sets of parameters q , Re and m.

Figure 5(a–c) displays the unstable temporal branches as functions of the axial
wavenumber k, for m = −1 and q = 2, and for Reynolds numbers of 104, 105 and
5 × 105. For Re = 104 there is a single unstable branch. For Re =105 three branches
are observed. For Re = 5 × 105, there are five unstable branches, and the behaviour
of the third and fourth ones is quite interesting. The third one becomes unstable
at a lower neutral point k ≈ 0.06; it reaches a maximum for k ≈ 0.08 and then it
abruptly decreases and crosses the fourth one for k ≈ 0.11. For larger k, this branch
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Figure 5. Amplification rates of unstable modes as function of wavenumber for q = 2 and
various sets of m and Re.

remains very weakly amplified up to its upper neutral point, for k ≈ 0.44. Near the
upper neutral point, the behaviour of the third and fourth branches is similar to
that observed near the lower neutral point, except that the branches avoid each other
instead of crossing. These unusual features were carefully checked, and a numerical
origin could be discarded. Note that a similar behaviour was observed by SNB for
the swirling Poiseuille flow, and by Khorrami (1992) for the q-vortex with q = 0.4.

Figure 5(d–f ) displays the case m = −2, q =2. The results look similar to those
for m = −1. For Re= 5 × 105 one also observes a crossing, but here it occurs between
the fourth and fifth branches. It is interesting to note that in all cases displayed, the
unstable modes with m = −2 reach higher amplification rates than those with m = −1.
This is consistent with the results displayed in figure 4 for the primary branch.

Figure 6(a–c) corresponds to the case with m = −1 and q = 3, and Reynolds
numbers of 104, 105 and 106. Results are very similar to those displayed in figure 5(a–c)
for q = 2. For Re= 104, only one weakly amplified mode is observed (according to
figure 3 this case is close to the stability threshold). For Re =105, two branches are
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Figure 6. Amplification rates of unstable modes as function of wavenumber for m = −1 and
various sets of q and Re. For q = 1.4 the dashed line corresponds to the inviscid results.

observed and for Re= 106 there are four. In the latter plot, we observe, again, the
characteristic crossing between the third and fourth branches.

Figure 6(d–f ) corresponds to m = −1, q = 1.4. This case is unstable in the inviscid
limit, and inviscid results are displayed with dashed lines. Five inviscid branches were
found, but due to difficulties often reported in the literature and discussed in the
introduction, they could not be followed down to their neutral points (note that two
of these branches display almost the same maximum value). For Re= 103, a single
unstable branch is obtained. Surprisingly, this branch does not correspond to any of
the inviscid modes: it occurs in a different range of wavenumbers, and its maximum of
amplification is about twice that of the inviscid ones. This branch most likely belongs
to the same family of viscous modes as those observed for q > 1.5. For Re =104 we
note the existence of four unstable modes. The most amplified one is, again, a viscous
mode. On the other hand, the second mode is an inviscid one. It reaches its maximum
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Figure 7. Structure of some viscous modes with q = 2, m= −1, k = 0.25. Eigenfunction
components: Re(−iu) (solid line), Im(−iu) (dashed line), Re(v) (dash-dotted line), Im(v) (dotted
line). (a) Re= 104, ωi = 0.01927; (b) Re= 105, ωi = 0.01417; (c) Re= 106, ωi = 0.00780.

amplification close to k ≈ 0.55, ωi ≈ 0.02, in agreement with the inviscid results. The
third branch of instability is observed to cross the second one. This mode seems to
be of a hybrid nature, as it displays partly the characteristics of the viscous modes,
and partly those of the inviscid ones. A fourth weakly unstable mode also exists for
k ≈ 0.5. For Re= 105 we also observe the coexistence of both viscous and inviscid
modes, as well as several modes with a hybrid nature. The most amplified mode is
now an inviscid one. Note, again, the characteristic crossing between the third and
fourth branches of unstable modes occurring in the vicinity of the lower neutral point.

4.2. Structure of the eigenmodes

Figure 7 shows the eigencomponents u and v of the most amplified mode for m = −1,
q = 2, for Reynolds numbers ranging from 104 to 106. Two features are particularly
interesting. First, as Re is raised, the structure of the mode becomes increasingly
concentrated in the vicinity of the vortex centreline. For example, for Re =106,
the whole structure of the mode is located within |r | < 0.25. This fully justifies the
identification of these modes as centre-modes. Secondly, the eigenvalue components
become violently oscillatory and the number of oscillations is an increasing function
of the Reynolds number. This feature is commonly observed in the asymptotic study
of viscous modes (Drazin & Reid 1981), and it clearly demonstrates the viscous
nature of the present modes. Note that the structure described here is very close to
that of the viscous modes of SNB: see, in particular, their figures 6 to 9 and compare
with our figure 8.

Figure 8 shows another representation of the structure of the eigenmodes, with iso-
levels of the axial vorticity component ξz(r, θ) = (1/r)[∂(rv)/∂r − imu] exp(imθ + ikz)
(in the z = 0 plane). The most amplified helical (m = −1) and double-helix (m = −2)
modes with Re = 104, q =2 are displayed. Under this representation, the modes are
observed to take the form of a tight spiral wrapped about the vortex centreline.

The trends demonstrated here (a spiral structure with increasingly strong oscillations
and a collapse toward the vortex centreline) have been observed for m = −1, −2 and
−3 for the most amplified mode, and they also hold for most of the secondary
modes. However, the mode which becomes weakly amplified and crosses the following
branches in figures 5(c), 5(f ) and 6(c) has a different structure. This mode is better
described as a ring mode, and its structure is similar to that of the ‘inviscid singular’
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Figure 8. Structure of some viscous modes with q = 2,Re =104: contours of constant
axial vorticity component. Levels correspond to 0, ±1/3, and ±2/3 of the maximum
value (with negative levels dashed). The dotted circles display the location of maximum
azimuthal velocity in the vortex (rmax = 1.1209). (a) m= −1, k = 0.25, ωi = 0.01927; (b) m=
−2, k = 0.5, ωi =0.02290.

mode computed by SNB and displayed in their figure 5. A full description of this
particular branch is left for future work.

4.3. Discussion

The results presented above, in particular the increasing oscillations of the eigenmode
components and the irregular behaviour of the secondary modes near their upper
and lower neutral points, strongly suggest that the present modes are related to the
viscous modes discovered in the swirling Poiseuille flow by SNB. In the concluding
sections of their paper, SNB suggested that modes related to those they had found
could exist in the q-vortex, and could affect all values of the swirl number. Our results
seem to confirm their expectation. However, other families of instabilities could have
been invoked to explain our results, and have to be ruled out.

First, a relation with Khorrami (1991)’s viscous modes is easily discarded. These
modes occur only for m =0 and m =1, and in a different range of swirl number.
Moreover, the asymptotic study of Duck & Khorrami (1992) showed that instead
of collapsing towards the centreline as Re → ∞, the structure of these modes tends
to a regular limit (except in the vicinity of a critical layer for m =1). Finally, the
amplification rates of these modes is O(Re−1) at leading order, and such a power law
is not observed for the viscous centre modes.

Let us consider, now, the near-neutral inviscid centre-modes of Stewartson & Brown
(1985). According to these authors, such modes should exist in the vicinity of the
curve of equation k ≈ |m|/q , but only in discrete intervals of the swirl number q . In
each of these intervals, the amplification rate of these modes should follow a law of
the form ωi =O(|m|/q − k)p+1 with p2 = m2 + 8q2/(q2 − 2), and according to Duck
(1996) viscosity should lead to a damping of these modes for Reynolds numbers
scaling as Re = O(|m|/q − k)−2−p . For m = −1, the case q = 2 falls within one of the
unstable intervals predicted by Stewartson & Brown (1985), but not the cases q =3
and q = 1.4. Accordingly, for q = 2, in the limit Re → ∞ some of the unstable branches
should asymptote to a common limit in the vicinity of their upper neutral point. This
prediction is not confirmed by our results, and similar results were obtained for q =2
and for q = 3. In the case q = 2, we performed a detailed study up to Re ≈ 107, but
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were not able to confirm the existence of the kinds of modes predicted by Stewartson
& Brown (1985). Possibly, although they are solutions of the inviscid problem with a
contour deformation rule, these modes may not be reached as the limit of the viscous
problem for vanishing viscosity. Such a possibility has already been hypothesized by
SNB in the related problem of swirling Poiseuille flow.

Now, if the modes studied here are related to the viscous centre modes of the
swirling Poiseuille flow, it may be asked whether the asymptotic results of SNB
directly apply to the q-vortex. However, a detailed study shows that it is not the
case, because the two flows differ in the vicinity of their centreline. For the rotating
Poiseuille flow, the axial velocity is given by W = ε(1 − r2) (ε being the inverse swirl
number in the notation of SNB) and the azimuthal velocity is V = r . For the q-vortex,
a Taylor series development shows that the axial velocity is W = 1 − r2 + O(r4), thus
the leading-order terms are proportional to those for the rotating Poiseuille flow. On
the other hand, the Taylor series of the azimuthal velocity is V = qr − qr3/2 + O(r5).
The difference may seem slight, but inspection shows that the O(r3) term, which is
absent in the rotating Poiseuille, occurs at leading order in the asymptotic scaling.

So, the results of SNB cannot be directly applied to the q-vortex. On the other
hand, an asymptotic treatment similar to that of SNB, but based on the relevant
scalings, has been undertaken. Two directions have been explored. First, Le Dizès &
Fabre (2004) have described analytically the structure of the modes away from the
neutral curves on the basis of a WKBJ expansion. They have been able to generalize
the analysis conducted in § 5 of SNB to an arbitrary mean flow. According to this
work, the amplification rate of the viscous modes of the q-vortex is given, at leading
order, by the following expression:

ωi =
3

2

[
q2k

(
k +

m

q

)]1/3

Re−1/3. (4.1)

The next term in the expansion, which is of order Re−1/2, has also been derived.
These expressions compare well with the present numerical results.

In a second direction, Fabre & Le Dizès (2004) have explored the vicinity of the
lower (k ≈ 0) and upper (k ≈ |m|/q) neutral curves following the approach of § § 3 and
4 of SNB, which consists of deriving a reduced system of equations for scaled variables
and solving them numerically. The approach leads to an asymptotic description of
the modes near the neutral conditions which does not reduce to that of SNB. In
the lower neutral curve region, the study provides an estimate of the lower neutral
point given by k− ≈ 4.73q1/2Re−1/2 for helical modes. For the upper neutral point,
the asymptotic study indicates a scaling with the form k+ ≈ |m|/q − O(Re−1/2), but
the dependence with respect to q is more intricate than for the lower neutral point.
In both cases the asymptotic results are in excellent accordance with the numerical
results presented here.

5. Application
Before concluding this paper, we briefly discuss the relevance of these findings

to aircraft trailing wakes. As emphasized in § 2.1, real-life trailing vortices are quite
different from the q-vortex model, so the present results cannot be extrapolated
directly. However, due to the centre-mode nature of the present instabilities, it may be
expected that their properties mainly depend on the flow conditions near the vortex
axis, not on the exact velocity laws. This is, indeed, confirmed by ongoing asymptotic
analyses. Based on these considerations, we may attempt to apply the present results
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to more general vortices assuming that a Taylor series development of the q-vortex
at r = 0 holds for these actual vortices.

Let us consider, for example, the wind tunnel experiment of Jacquin et al. (2001),
already mentioned in § 2.1. In this experiment, the span of the model was b0 = 0.448 m
and the nominal velocity of the wind tunnel was U0 = 50 m s−1. The maximum values
of the azimuthal and axial velocities within the vortices were found to be respectively
25%U0 and 10%U0, and the ‘inner’ vortex core radius was estimated to be 1%b0.
This may be approximated by a q-vortex with q ≈ 4, and Re ≈ 1500. According to
our results this leads to a stable configuration. In this experiment, vortices displayed
significant meandering whose origin was not fully understood. We may conclude
here that for this particular experiment, vortex meandering is probably not related
to a viscous instability. It is most likely to be due to the excitation of Kelvin
waves within the vortex core by the surrounding turbulence, as initially proposed by
Jacquin et al. (2001). Now, if the data obtained in this experiment are extrapolated
to a large transport aircraft (such as an Airbus A340 or a Boeing 747), with a
typical span b0 = 60 m and a landing approach velocity U0 = 70 m s−1, the Reynolds
number based on the vortex scales reaches Re ≈ 2.8 × 105. Retaining the same swirl
number leads to unstable conditions. More specifically, for this set of parameters,
the most amplified mode is a double-helix (m = −2) one, with a dimensionless
amplification rate ωi =0.011. This corresponds to a dimensional characteristic time
scale τ = ω−1

i ≈ 8 s. Interestingly, this time scale is comparable to that of the inviscid
cooperative instabilities. For example, under the same conditions, the characteristic
time scale of the Crow instability is τ = 30 s. The development of viscous instabilities
in such trailing wakes could thus constitute an additional source of energy for vortex
meandering.

The tentative application presented above must be considered with caution, because
little is known about the properties of real trailing vortices in their central region. For
example, in the experiment of Jacquin et al. (2001), the ‘inner core’ region was too
small to be discriminated experimentally with confidence, and the value 1%b0 was
only indicative. The extrapolation of a wind tunnel experiment to a full-scale aircraft
is also questionable. Due to these uncertainties, the significance of viscous instabilities
in trailing vortices remains puzzling, and future investigations should be undertaken
to clarify the problem. Finally, the significance of viscous instabilities in other kinds
of vortices, such as for example tornadoes or coherent structures in turbulent flows,
is also a matter of interest.

6. Conclusions
In this paper we have presented a numerical study of the temporal stability of a

trailing line vortex for a range of parameters corresponding to large swirl numbers
(q > 1.5) and large Reynolds numbers. In this range, which is usually assumed to
be stable, we have observed the existence of viscous instabilities affecting negative
azimuthal wavenumbers and small axial wavenumbers. We have described numerically
the topography of these instabilities using a highly accurate Chebyshev collocation
method. These results complement those of Mayer & Powell (1992) who considered
smaller values of the Reynolds and swirl numbers. It is shown that while viscosity is
purely stabilizing for small Reynolds numbers, it becomes destabilizing for Re � 103.
For example, for Re= 104, instabilities persist up to a critical value of the swirl
number which is nearly twice the inviscid threshold qcrit ≈ 1.5. Moreover, our results
indicate that in the limit of very large Reynolds numbers the critical swirl number
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tends to infinity. Consequently, for vanishing (but non-zero) viscosity, this kind of
instability is likely to occur for all values of the swirl number q .

We have described numerically these instabilities up to Re= 106. Our results show
that these instabilities take the form of centre-modes, i.e. they only affect a narrow
region in the vicinity of the vortex centreline. Another interesting feature is the
occurrence of secondary branches of unstable modes, some of them displaying an
irregular mode-crossing behaviour in the vicinity of their neutral points. These features
allow one to conclude that the present instabilities are related to a family of viscous
modes studied in the swirling Poiseuille flow by Stewartson et al. (1988). On the
other hand, they are distinct from the inviscid modes mapped by Mayer & Powell
(1992), as well as from the viscous modes described by Khorrami (1991), and from
the near-neutral inviscid centre-modes predicted by Stewartson & Brown (1985). For
q < 1.5, they coexist with the family of inviscid modes, and some modes with an
hybrid nature have been observed.

Finally, we have discussed the application of these results to aircraft trailing vortices.
According to what is known from experiments about realistic vortex cores, the viscous
instability could occur in trailing vortices, and develop on characteristic time scales
comparable to those of the cooperative instabilities. Further investigations are needed
to clarify their significance in the dynamics of trailing wakes.

It may appear surprising that, despite the considerable work on the subject, these
instabilities have not been identified before. We attribute our success to the accuracy of
our Chebyshev collocation method. As presented in § 2, this method takes advantage
of the symmetry properties of the problem, and allows a regular distribution of the
collocation points near the axis of symmetry. This enables modes with a complex
structure in the vicinity of the axis to be captured, such as the centre-modes considered
here. However, our numerical method reaches its limits for Reynolds numbers of order
106 or larger. An investigation of these centre-modes using asymptotic methods is in
progress (Fabre & Le Dizès 2004; Le Dizès & Fabre 2004). This approach should
provide a clearer picture of the instability properties in the range of very large
Reynolds numbers.

The authors would like to thank Stéphane Le Dizès for the provision of unpublished
asymptotic work, and for fruitful discussions during the revision of this paper.

Appendix. Components of the matrices in (2.4)

L11 = k2 − ∂r∂
∗
r , (A 1)

L12 =
m

r2
(1 − r∂r ), (A 2)

L21 =
m

r2
(1 + r∂r ), (A 3)

L22 = k2 +
m2

r2
, (A 4)

M11 = Σ(k2 − ∂r∂
∗
r ) − Σ ′∂∗

r + k(W ′′ + W ′∂r ), (A 5)

M12 = 2k2Ω − m

r
Σ ′ +

m

r2
Σ(1 − r∂r ), (A 6)
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M21 = k2(2Ω + rΩ ′) − mk

r
W ′ +

m

r2
Σ(1 + r∂r ), (A 7)

M22 = Σ

(
k2 +

m2

r2

)
, (A 8)

D11 = −∂r∂
∗
r ∂r∂

∗
r + 2k2∂r∂

∗
r + ∂r

(
m2

r2
∂∗

r

)
− k2

(
k2 +

m2

r2

)
, (A 9)

D12 = −m

r
∂3

r +
2m

r2
∂2

r +

(
mk2

r
+

m3 − 3m

r3

)
∂r + 3

(
m − m3

r4
− mk2

r2

)
, (A 10)

D21 =
m

r
∂3

r +
2m

r2
∂2

r −
(

mk2

r
+

m3 + m

r3

)
∂r +

(
m − m3

r4
− 3mk2

r2

)
, (A 11)

D22 = k2∂r∂
∗
r + ∂∗

r

(
m2

r2
∂r

)
+

m2

r4
−

(
k2 +

m2

r2

)2

, (A 12)

where

∂∗
r = ∂r + 1/r, Σ(r) = mΩ(r) + kW (r).
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